Wiman and Arima Theorems for Quasiregular Mappings

نویسندگان

  • M. Vuorinen
  • Shusen Ding
چکیده

It follows from the Ahlfors theorem that an entire holomorphic function f of order ρ has no more than 2ρ distinct asymptotic curves where r stands for the largest integer ≤ r. This theorem does not give any information if ρ < 1/2, This case is covered by two theorems: if an entire holomorphic function f has order ρ < 1/2 then lim supr→∞min|z| r |f z | ∞ Wiman 1 and if f is an entire holomorphic function of order ρ > 0 and l is a number satisfying the conditions 0 < l ≤ 2π, l < π/ρ, then there exists a sequence of circular arcs {|z| rk, θk ≤ arg z ≤ θk l}, rk → ∞, 0 ≤ θk < 2π, along which |f z | tends to ∞ uniformly with respect to arg z Arima 2 . Below we prove generalizations of these theorems for quasiregular mappings for n ≥ 2. The next two theorems are generalizations of the theorems of Wiman and of Arima for quasiregular mappings on manifolds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniformly Quasiregular Maps with Toroidal Julia Sets

The iterates of a uniformly quasiregular map acting on a Riemannian manifold are quasiregular with a uniform bound on the dilatation. There is a Fatou-Julia type theory associated with the dynamical system obtained by iterating these mappings. We construct the first examples of uniformly quasiregular mappings that have a 2-torus as the Julia set. The spaces supporting this type of mappings incl...

متن کامل

Examples of Uniformly Quasiregular Mappings

In this paper we construct examples of uniformly quasiregular (uqr) mappings. These provide counterexamples for a rigidity conjecture in quasiregular dynamics. It states that a closed manifold of dimension at least three, which admits a branched uqr mapping, is quasiconformally equivalent to an ordinary sphere Sn. 1. Statements and results In this paper we construct examples of a certain type o...

متن کامل

Singularities of quasiregular mappings on Carnot groups

In 1970 Poletskĭı applied the method of the module of a family of curves to describe behavior of quasiregular mappings (in another terminology mappings with bounded distortion) in Rn. In the present paper we generalize a result by Poletskĭı and study a singular set of a quasiregular mapping using the method of the module of a families of curves on Carnot groups.

متن کامل

Uniformly Quasiregular Mappings of Lattès Type

Using an analogy of the Lattès’ construction of chaotic rational functions, we show that there are uniformly quasiregular mappings of the nsphere R whose Julia set is the whole sphere. Moreover there are analogues of power mappings, uniformly quasiregular mappings whose Julia set is Sn−1 and its complement in Sn consists of two superattracting basins. In the chaotic case we study the invariant ...

متن کامل

Convergence theorems of an implicit iteration process for asymptotically pseudocontractive mappings

The purpose of this paper is to study the strong convergence of an implicit iteration process with errors to a common fixed point for a finite family of asymptotically pseudocontractive mappings and nonexpansive mappings in normed linear spaces. The results in this paper improve and extend the corresponding results of Xu and Ori, Zhou and Chang, Sun, Yang and Yu in some aspects.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010